Increasing Proliferation Resistance of Sodium Fast Reactor Fuel Cycle Through Use of a Nuclear Resonance Fluorescence Detector

نویسندگان

  • David Ballin Smith
  • David Ballin
  • Michael Golay
  • Dennis Whyte
چکیده

The proliferation resistance of a reprocessing facility can be improved by using a novel detection system that utilizes the nuclear resonance fluorescence (NRF) phenomenon to determine the isotopic composition of materials flowing through the plant. In an aqueous reprocessing facility, the waste stream was identified as a weak point for proliferation resistance. By identifying the isotopic composition of the waste stream and monitoring levels of plutonium and uranium, greater accountancy can be maintained. After the detection system was designed, a probabilistic risk assessment method was used to evaluate the added proliferation resistance afforded by the NRF detection system and the overall proliferation resistance of the reprocessing facility to a diversion of a small quantity of material from the waste stream by two individuals. The overall probability of success for a proliferator to divert materials from a reprocessing facility utilizing an NRF detection system is 8.73* 10-5. This is a decrease, from 3.39* 104 , over the probability of success for the proliferator if the NRF detection system is not present. This decrease in proliferator success probability demonstrates and increased proliferation resistance of the reprocessing facility. The NRF detection system is shown to increase the proliferation resistance of the reprocessing facility. Thesis Supervisor: Michael Golay Title: Professor of Nuclear Science and Engineering

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Integrating Nuclear Resonance Fluorescence Safeguards into Nuclear Energy Systems using Non-proliferation Assessment Methods

A new detection technique, originally thought for the detection of explosives in cargo containers, is presented in this paper for the particular application of isotopic detection of nuclear materials in a Nuclear Energy System (NES). This technique is called Nuclear Resonance Fluorescence (NRF) and the reference fuel scheme to which it is applied is the Sodium Fast Reactor (SFR). The objective ...

متن کامل

Thorium Blended and Regular Mox Burn-up Studies for Fast Reactor Fuel Cycle Safeguards

Fast reactor fuel cycle (FRFC) is regaining importance because of its vital role in the long term development of nuclear power. The safety issues associated with the fast reactors are now well understood and newer designs can address those from the lessons learned in the past. The same cannot be ascertained about their safeguards issues. Primary reason being the presence of special nuclear mate...

متن کامل

Fast Reactor Physics and Computational Methods

Six advanced reactor concepts have been selected for Generation-IV reactors and are being investigated worldwide to meet the challenging goals of effective resource utilization and waste minimization (sustainability), improved safety, enhanced proliferation resistance, and reduced system cost. [1] The six systems are very high temperature reactor (VHTR), sodium-cooled fast reactor (SFR), superc...

متن کامل

Sustainability Features of Nuclear Fuel Cycle Options

The nuclear fuel cycle is the series of stages that nuclear fuel materials go through in a cradle to grave framework. The Once Through Cycle (OTC) is the current fuel cycle implemented in the United States; in which an appropriate form of the fuel is irradiated through a nuclear reactor only once before it is disposed of as waste. The discharged fuel contains materials that can be suitable for ...

متن کامل

Analysis of Nuclear Proliferation Resistance of DUPIC Fuel Cycle

This study compares the proliferation resistance of DUPIC (Direct Use of Spent PWR Fuel in CANDU) fuel cycle with other fuel cycle cases. The other fuel cycles considered in this study are PWR of once-through mode (PWR-OT), PWR of reprocessing mode (PWR-MOX), in which spent PWR fuel is reprocessed and recovered plutonium is used for making MOX (Mixed Oxide), CANDU with once-through mode (CANDU-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011